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Symbiotic interaction between gut microbial community and host immune system

Mari Murakami, Kiyoshi Takeda

Graduate School of Medicine, Osaka University

Gut is harbored by an enormous number of commensal microbes and pathogens. Trillions of
gut microorganisms live in close symbiosis with their host, and have impacts on various aspects of
host physiology. This is due to the direct interaction between host cells and microbes or their
signaling molecules, such as metabolites, which can reach and exert their effects both locally and
distally. Advances in high-throughput sequencing technologies in the past decade has led to a
tremendous growth in knowledge about the role played by gut microbes on our health. In this
review, we give an overview of microbiome-host interactions in the context of host immune system.
In particular, new insights into the different immune regulatory mechanisms in the large and
small intestines are provided. Furthermore, the mechanisms of host-microbe competition for
metal irons are also discussed.

Keyword: Gut microbiota, Intestinal immune system, Symbiosis
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